géométrie plane - definizione. Che cos'è géométrie plane
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è géométrie plane - definizione

MATHEMATICAL APPENDIX TO DESCARTES' DISCOURSE ON METHOD, PUBLISHED IN 1637
The Geometry; La Geometrie; La geometrie
  • ''La Géométrie''}}

La Géométrie         
La Géométrie was published in 1637 as an appendix to Discours de la méthode (Discourse on the Method), written by René Descartes. In the Discourse, he presents his method for obtaining clarity on any subject.
Éléments de géométrie algébrique         
BOOK
Elements de geometrie algebrique
The Éléments de géométrie algébrique ("Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné), or EGA for short, is a rigorous treatise, in French, on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the Institut des Hautes Études Scientifiques. In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined.
Supplementary Ideographic Plane         
  • A map of the Supplementary Ideographic Plane. Each numbered box represents 256 code points.
  • A map of the Supplementary Special-purpose Plane. Each numbered box represents 256 code points.
  • A map of the Tertiary Ideographic Plane. Each numbered box represents 256 code points.
  • A map of the Supplementary Multilingual Plane. Each numbered box represents 256 code points.
CONTINUOUS GROUP OF 65536 CODE POINTS IN THE UNICODE CODED CHARACTER SET
Basic multilingual plane; Basic Multilingual Plane; Supplementary Multilingual Plane; Plane One; Plane Zero; Plane Fifteen; Plane Sixteen; Supplementary Ideographic Plane; Plane Two; Supplementary Special-purpose Plane; Plane Fourteen; Plane 0; Plane 1; Plane 2; Plane 14; Plane 15; Plane 16; Astral character; Mapping of Unicode character planes; Unicode plane; Supplementary characters; Unicode planes; Tertiary Ideographic Plane; Private Use Plane; Astral plane (Unicode); Plane 15 (Unicode); Plane 16 (Unicode); Private use plane; Private use plane (Unicode); UCS-PUP15; PUP15; PUP16; UCS-PUP16; PUP15 (Unicode); PUP16 (Unicode); Supplementary plane; Unicode BMP; Private Use Planes; Plane 4; Plane 5; Plane 6; Plane 7; Plane 8; Plane 9; Plane 10; Plane 11; Plane 12; Plane 13; Supplemental Multilingual Plane; Supplemental Ideographic Plane; Supplemental Special-purpose Plane; Plane (unicode)
<text, standard> (SIP) The third plane (plane 2) defined in Unicode/ISO 10646, designed to hold all the ideographs descended from Chinese writing (mainly found in Vietnamese, Korean, Japanese and Chinese) that aren't found in the {Basic Multilingual Plane}. The BMP was supposed to hold all ideographs in modern use; unfortunately, many Chinese dialects (like Cantonese and Hong Kong Chinese) were overlooked; to write these, characters from the SIP are necessary. This is one reason even non-academic software must support characters outside the BMP. Unicode home (http://unicode.org). (2002-06-19)

Wikipedia

La Géométrie

La Géométrie was published in 1637 as an appendix to Discours de la méthode (Discourse on the Method), written by René Descartes. In the Discourse, he presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method (as well as, perhaps, considering the contemporary European social climate of intellectual competitiveness, to show off a bit to a wider audience).

The work was the first to propose the idea of uniting algebra and geometry into a single subject and invented an algebraic geometry called analytic geometry, which involves reducing geometry to a form of arithmetic and algebra and translating geometric shapes into algebraic equations. For its time this was ground-breaking. It also contributed to the mathematical ideas of Leibniz and Newton and was thus important in the development of calculus.